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Elementary Trigonometry 
 
In a right triangle, the side opposite the right angle is called the hypotenuse, and the other two sides are called its 

legs. By knowing the lengths of two sides of a right triangle, the length of the third side can be determined by 

using the Pythagorean Theorem: 

 

Pythagorean Theorem: The Square of the length of the hypotenuse of a right triangle is equal to the sum of the 

squares of the lengths of its legs. 

Trigonometric Functions of an Acute Angle: 

 

Local maximums and 

minimums 

A real-

valued  function  f  defined on a 

domain  X  has  a  global 

(or absolute) maximum 

point at x∗ if f(x∗) ≥ f(x) for 

all x in X. Similarly, the function 

has 

a global (or absolute) minimum 

point at x∗ if f(x∗) ≤ f(x) for 

all x in X. The value of the function at a maximum point is called the maximum value of the function and the value 

of the function at a minimum point is called the minimum value of the function. 

If he domain  X  is a  metric space  then  f  is said to have a local (or relative)  maximum point at the point x∗ if 

there exists some ε > 0 such that f(x∗) ≥ f(x) for all x in X within distance ε of x∗. Similarly, the function has a local 

minimum point at x∗ if f(x∗) ≤ f(x) for all x in X within distance ε of x∗. A similar definition can be used when X is 

a topological space, since the definition just given can be rephrased in terms of neighbourhoods. 

In both the global and local cases, the concept of a strict extremum can be defined. For example, x∗ is a strict 

global maximum point if, for all x in X with x ≠ x∗, we have f(x∗) > f(x), and x∗ is a strict local maximum point if 

there exists some ε > 0 such that, for all x in X within distance ε of x∗ with x ≠ x∗, we have f(x∗) > f(x). Note that a 

point is a strict global maximum point if and only if it is the unique global maximum point, and similarly for 

minimum points. 

A continuous real-valued function with a compact domain always has a maximum point and a minimum point. 

Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a 

closed interval, then by the extreme value theorem global maxima and minima exist. Furthermore, a global 

maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie 

on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local 

maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the boundary, and 

take the largest (or smallest) one. 

Local extrema of differentiable functions can be found by Fermat's theorem, which states that they must occur 

at critical points. One can distinguish whether a critical point is a local maximum or local minimum by using 

the first derivative test, second derivative test, or higher-order derivative test, given sufficient differentiability. 

For any function that is defined piecewise, one finds a maximum (or minimum) by finding the maximum (or 

minimum) of each piece separately, and then seeing which one is largest (or smallest).(Wikipedia) 

The first step to calculating the relative extrema is calculating the derivative of a function  dy/dx. 

After calculating the derivative (dy/dx), set the derivative equal to 0.  Local extrema all have a slope of 

zero.  Setting the derivative, which is the slope at a specific point, equal to zero shows all points where the graph 

has a slope of zero, and as a result is an extrema.  

Solve for x. 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Extreme_value_theorem
https://en.wikipedia.org/wiki/Fermat%27s_theorem_(stationary_points)
https://en.wikipedia.org/wiki/Critical_point_(mathematics)
https://en.wikipedia.org/wiki/First_derivative_test
https://en.wikipedia.org/wiki/Derivative_test#Second_derivative_test_(single_variable)
https://en.wikipedia.org/wiki/Higher-order_derivative_test
https://en.wikipedia.org/wiki/Piecewise
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After solving for x, you must do the First Derivative Test 

 A) Draw a number line with the x value(s) 

 B) Use numbers before and after the calculated x value, plugged into the first derivative equation,to determine 

whether the numbers before and after are positive or negative.  

 C) If the number before is positive and the number after is negative, the extrema is a local maximum. 

 D) If the number before is negative and the number after is positive, the extrema is a local minimum 

 E) On the occasion the number before and after is the same sign (positive or negative) the number is not a local 

maximum or minimum. 

 F) The reason the first derivative test is true is because the first derivative is a slope the function. The point where 

the slope changes from positive to negative is a maximum because the function increases as much as it possibly 

can before its slope equals zero (critical point) and then decreases after this point because the slope is then 

negative. The opposite is true for a minimum. 

 

1. Surface area and Volume of figures 
 
Field of application: Geometric figures.  

Required knowledge: Calculations with real numbers, Percentages, Average, Comparison. 

Project: The famous architectural office of Santiago Calatrava; wants to test your math skills with a series of 

geometric task. 

Moodle: http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=teD0rQZDlw#section-4 

Authors:  

Coordinator:  

The assignment of this lesson requires from students to find the surface area and volume of figures, to 

approximate the amount and cost of materials you’ll need to construct a castle, and to make predictions about 

changes to dimensions 

Resources: Three-Dimensional Design (Model created using Google Sketchup), Two-Dimensional Views, 

Geometry Figure Formula Sheet . 

Problem: 
You and your friends are excited about working next summer in the famous architectural office of Santiago 

Calatrava; however, Santiago wants to test your math skills with the following geometric task. 

You are given below a three-dimensional (3D) blueprint of a triangular castle design (Figure 1) with different 

geometric figures that touch (together with two-dimensional views of castle and a scale – Figure 2). A formula 

sheet and patterns to aid you in tasks will be provided to you (Figure 3). 

The task requires from you to find the surface area and volume of figures, to approximate the amount and cost of 

materials you’ll need to construct the castle, and to make predictions about changes to dimensions. 

 

Three-Dimensional Design  
(Model created using Google Sketchup) 

 

 
Figure 1 

 
Two-Dimensional Views 
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Top View  
Legend and Scale  
Grid is 2cm x 2cm for model construction,  
1m x 1m for real construction  
the scale from model to actual size is 1 to 50 

 

Front View  
 
The blue picture in the front view is the cutaway of the front 
rectangular prism (entrance) 

 

Side View  
 
The three green rectangular prisms have the same dimensions. 
 

Figure 2 
Task: 

A) Geometric Figures Details: Discover the geometric shapes used for the construction of triangular castle. 

Include answers in the table below. All work including formulas used should be shown for full credit. 

(Hint: Google.com and mathworld.wolfram.com may help you) 

Geometric Name 

of Figure 

Surface Area 

equation 

Volume 

equation 

      

      

 
B) Analysis Questions: Include answers in the table provided below. All work including formulas used and 

units should be shown for full credit. 

1. Find the total volume and surface area of model and actual castle. (Note: there are no bases, i.e. bottom of 

castle need not be constructed) 

2. If a 35 liters bag of “cement” sells for €3.97, how much cement will you need to build the castle and what 

will it cost for cement supply? (Hint: answers should be in m3 and euro; see Geometry Figure Formula sheet for 

conversion details). 

3. Which shape on your castle makes the most sense to double in size without having to change the other 

shapes? How does the volume and surface area of this shape change when the dimensions are doubled? Express 

your answer as a ratio comparing the old and new results (although the total surface area and volume of castle 

may change, this question only pertains to one figure). 

 Geometric Name of 

Figure 

Dimensions of Figure 

(include units) 

Surface Area (include 

units) 

Volume (include units) 

1.             

2.             

 
 

http://srv-1lyk-aigiou.ach.sch.gr/Google.com
http://srv-1lyk-aigiou.ach.sch.gr/mathworld.wolfram.com
http://srv-1lyk-aigiou.ach.sch.gr/moodle/mod/resource/view.php?id=185
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2. Stadium seating 
 

Field of application: Geometry, model a real-life architecture situation mathematically 

Required knowledge: slope calculation, spreadsheet, arithmetic and geometric Sequences and Series 

Project: Design the seating layout for a stadium. 
Moodle:http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5#section-2 

Authors:  

Coordinator:  

The assignment: This problem encourages students to model a real-life architecture situation mathematically, 

that of tiered seating design in sports stadium.  

 Background:In stadium seating, most or all seats are placed higher than the seats immediately in front 

of them so that the occupants of further-back seats have less of their views blocked by those further forward. 

This is especially necessary in stadiums where the subject matter is typically best observed from above, rather 

than in-line or from below. In addition to sports venues and performing arts venues, many other venues that 

require clear audience views of a single area use stadium seating, including religious institutions, lecture halls, 

and movie theaters 

1st Assignment - Assumptions and height of 2nd seat  

One of the challenges in designing a stadium is to make sure that spectators can see the event without their 

views being blocked by the spectators in front. 

Your task is to design the tiered seating for the stadium.  

The stadium director has stipulated that all spectators must be able to see clearly a point 10m in front of the front 

row of seating:  

The spectator in the second row needs to have line of sight to the same point as the spectator in the first row, as 

seen in the diagram above. Notice that the spectator in the second row needs some extra clearance in order to see 

comfortably over the first spectator's head. 

Your tasks 

1) Go to edpuzzle.com and create a student account if haven't yet (no email address needed!). Click on "Join 

Class" and enter the DREAM class code: atpakde. Watch the video about math modeling, answering where 

necessary. 

2) Make reasonable assumptions about the following items: 

 The first spectator's eye-level is .... m above the ground. 

 There is an extra ..... m of clearance from his eye-level to the second spectator's line-of-sight, so that each 

row can see over the row in front. 

 The back of each seat is ..... cm behind the back of the seat in front. 

And sketch the diagram that shows your assumptions. 

https://en.wikipedia.org/wiki/Sports_venue
https://en.wikipedia.org/wiki/Movie_theater
http://srv-1lyk-aigiou.ach.sch.gr/moodle/mod/assign/view.php?id=146
https://edpuzzle.com/
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3) How high above ground level does spectator 2's seat need to be?  

2nd Assignment  

Now draw a similar diagram with the dimensions and unknowns for spectators 2 and 3. 

How high above ground level does spectator 3's seat need to be? 

3rd Assignment 

Finally, imagine there were 40 rows of seating in the stadium.  

Can you work out the heights above ground level of each of the 40 rows, and hence plot a side view of the 

seating? 

It is very helpful to use a spreadsheet to perform the repeated calculations and plot the results. 

Resources:  https://en.wikipedia.org/wiki/Stadium_seating 

https://edpuzzle.com/ 

Generalization: design a seating plan for the new football arena with a number of seats between 18000 and 22500 

.  
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3. The house stair slope 
 
Field of application: Geometry 

Required knowledge: angles, fraction, trigonometric functions 

Project: The house stair slope 

Moodle:http://srv-1lyk-aigiou.ach.sch.gr/moodle/mod/assign/view.php?id=163 

Authors:  

Coordinator:  

The problem: The figure shows the intersection of a house stair, where R and T express the height and the step 

of the stair respectively 

 Find the minimum and maximum angles of a house stair 

 A typical angle for house stairs is 40o. If the step of the foot is 23cm, find the stair height 

 According to architects, the most "suitable" ratio R/T is 16cm / 30cm. Find the tilt of the "ideal" stair 

Resources: Moodle  

Generalization: Research can be extended to other stairs. 
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4. Βypass for a small village 
 
Field of application: Geometry, physics 

Required knowledge: Measurement, ratio and proportion and speed-time-distance calculations. 

Project: Βypass for a small village 

Moodle: http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G#section-4 

Authors:  

Coordinator:  

The assignment:.  
This case study is designed for students to discover how useful and necessary mathematical ideas can be when 

solving real-world architecture problems. In particular, this case study challenges students to create an optimal 

route for a village bypass using software, while ensuring that the proposed route conforms to the mathematical 

conditions laid down by the Highways Agency and also considering social, environmental and cost 

minimization issues. Mathematics can provide justification for positioning a new a village bypass highway. 

The pupils are also challenged to make decisions about priorities and to discuss the strengths and weaknesses 

of others’ routes. 

Measurement, ratio and proportion and speed-time-distance calculations are needed to design the bypass. The 

emphasis is on using mathematical findings and reasoning to convince others. There are no ‘right’ answers; 

routes are presented to the class and put to a peer assessment. 

In particular, students  will first consider all the issues that need to be taken into account in a bypass (Lesson 

1) and then propose, measure and refine routes for the bypass (Lesson 2). Then (Lesson 3) groups will share 

their proposals and a class peer assessment will decide for the better group. (Lesson 4) will be devoted 

to ask the students to reflect on the case study and tell them to design bypass for a local town or village that 

arguably needs one and analyse it using Google Maps or Google Earth. 

Students consider the social issues of bypasses, their benefits and drawbacks, through relative newspaper 

articles.Arised issues of financial costs, safety, health and pollution, traffic flow and impacts on the natural and 

human environment are considered. Controversial bypasses have resulted in public campaigns either for or 

against a given bypass. 

Students are expected to understand that length, number of junctions and terrain affect the cost of a bypass; and 

that curves and junctions slow traffic down. 

The bypass must be safe and allow traffic to flow freely and costs must be kept to a minimum. There is no right 

answer and the best solution will be decided by class.We distribute Curves and Speed Limits, Costs and 

Junctions papers to help students designing the optimal bypass. Each group will review and refine their rough 

route from last lesson using these resources. 

 The problem: Does Halstead Need a Bypass? 

“Halstead is a small market town in South East England, North Essex, and within 15 miles west of Colchester. 

Halstead is next to the River Colne, and is situated in the Colne Valley. Halstead has a population of 10 000 

and is also the only settlement of its size in the Essex region without a bypass. Halstead was also a weaving 

town (where sheep’s wool is made into clothe). 

Halstead is central to several big towns, such as Colchester, Braintree and Haverhill. Everyday traffic from all 

these towns has to pass through Halstead high street in order to commute, this usually results in Halstead 

becoming greatly congested on a regular basis, increasing air and noise pollution, and therefore Halstead central 

could hugely benefit from a bypass. 

A bypass is a route, which is built to avoid or ‘bypass’ congestion in a built up town or village, this lets traffic 

flow without interferences from local traffic, this improves congestion and road safety. 

There are many reasons for and against the construction of a bypass. 

Advantages: 

Less congestion in town. 

Less pollution in town central. 

Lorries would no longer have to drive through the town. 

Both noise and air pollution would decrease in town. 

Local builders would hugely benefit, from work needed. 

It will be quicker for people to travelling to work.  

Disadvantages: 

Expensive, local tax payers of Halstead would compensate. 

An increase in noise pollution. 
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An increase in air pollution. 

Bypass would destroy surrounding environment. 

Less customers and income from commuters in the town centre. 

In the past there have been several proposals for a bypass to be built in Halstead. In 1987, the Essex County 

Council classified main roads into the town a ‘busy’ and found that nearly 50 % of the traffic was passing 

through Halstead. A bypass was first proposed in 1990, and public discussions were held, and a preferred route 

emerged, although it was the most costly of all options, costing £11 million. Four Years later two small changes 

were made to the route, following further discussions. Later, in 1997, it was decided that a bypass may be built 

after 2000, when sufficient funds may become available, but has continued to be put on hold. 

After analysing my results I conclude that I do not believe that a bypass should be built in Halstead. I think that 

he environmental impact, and impact on local residents is too big. Taxes would increase enormously and the 

consequence on businesses in the town will also be huge. The environment would be destroyed, ruining many 

habitats and bridle paths so horse riders and hikers wouldn’t benefit at all. 

Although I don’t believe Halstead needs a bypass, if one were to be built, I reckon that route A is the best 

choice, as this route goes further around the town than route B, therefore the town of Halstead would be much 

quieter, and less disturbed by the air and noise pollution.” 

Task: Draft a rough route - Group work (~20 mins)  

Each group should prioritise the stakeholder issues you consider important. You must come to 

agreement within your group, by producing a priority list of the interests you consider most important. 

Each group should then draft a rough route for a bypass, using the ByPass software. 

Keep in mind that you will modify and improve your routes in the next lesson. 

It should be clear that in the final lesson you will present your final route and a peer assessment will 

be taken. 

Submit your answers in a file. You'll also share and explain your priority issues and route suggestion 

in classroom. 

Resources: ByPass software, GoogleEarth maps 

Generalization: Design bypass for a local town or village that arguably needs one. Then analyse the bypass and 

estimate its cost and speed limits. You can research the true cost and speed limits of the bypass and find out 

whether these figures match your own 

  

http://srv-1lyk-aigiou.ach.sch.gr/moodle/mod/resource/view.php?id=166
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5. Maximum Viewing Angle 
 
Field of application: Geometry 

Required knowledge: Trigonometry, inverse trig. functions, trig. formulas, derivative forms, and extrema 

theory  

Project: Maximum viewing angle 

Moodle: http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G#section-9 

Authors:  

Coordinator:  

The problem: The local municipality will purchase a sign with a local turistic information for advertisement. The 

sign will be placed on a hill that is 6 meters high with the bottom of the sign 1,5 meters above the ground on the 

hill. At what distance from a stopped car at road level should the construction firm place the posts upon which the 

sign will be fastened so that a maximum viewing angle will be achieved? What will the maximum viewing angle 

be? 
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6. Highway survey points 
 
Field of application: Geometry 

Required knowledge: Rectangular system of coordinates, angles 

Moodle: http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5 

Authors:  

Coordinator:  

The problem: As a new graduate you have gained employment as a graduate engineer working for a major 

contractor that employs 2000 staff and has an annual turnover of 600m euros. As part of your initial training 

period the company has placed you in their engineering surveying department for a six-month period to gain 

experience of all aspects of engineering surveying. One of your first tasks is to work with a senior engineering 

surveyor to establish a framework of control survey points for a new 12m euros highway development consisting 

of a two mile by-pass around a small rural village that, for many years, has been blighted by heavy traffic passing 

through its narrow main street. 

In this exercise you will carry out the geometric calculations that would enable you to determine the precise 

coordinates of the control survey points. These calculations are based on site measurements obtained through a 

process known as traversing. 

Calculate the coordinates of the traverse points for a section of a control network established prior to the 

construction of the new highway, data as given in the table below. 
Example Data (1): 

The coordinates of station A in the local system are defined to be Easting 1000.000 metres and Northing 

2000.00 metres. The coordinates of F have been previously calculated by other surveys to be Easting 

1558.27 metres and Northing 2253.93 metres. The known initial bearing from A to B is 45° 10’ 10’’. 

 
 

Station 
Measured 

Distance to 

next station 

Measured clockwise angle Measured 

Clockwise 

angle 

 

Easting 

 

Northing 

 (metres) (degrees mins seconds) (degrees) (metres) (metres) 

A 110.45 45 10 10 * 45.1694 1000.00 2000.00 

B 121.33 185 30 30 185.5083   

C 99.86 196 10 24 196.1733   

D 169.27 200 10 25 200.1736   

E 135.26 160 45 45 160.7625   

F        

* This is not an angle observed at A but the known initial bearing from A to B. 

Example Data (2): 

The coordinates of station A in the local system are defined to be Easting 1306.12 metres and Northing 

1888.85 metres. The coordinates of F have been previously calculated by other surveys to be Easting 

1397.90metres and Northing 2185.14 metres. The known initial bearing from A to B is 30° 10’ 0’’. 

 

Station 
Distance to 

next station 

Measured clockwise angle Measured clockwise 

angle 

 

Easting 

 

Northing 

      

 (metres) (degrees mins seconds) (degrees) (metres) (metres) 

A 98.00 30 10 0 *30.1667 1306.12 1888.85 

B 122.35 270 25 35 270.4264   

C 125.46 95 8 15 95.1375   

D 135.67 89 18 22 89.3061   

E 97.36 220 5 55 220.0986   

F        



 

COMPMATH   14  

      
 

Resources:. “background”    (http://srv-1lyk-

aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G#section-11), “questions” ( http://srv-

1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G#section-11) 

 

Practical Activity : Mapping a garden, perimeter of a building or similar area  

Preparation: Try to choose an area that is not just a simple rectangle, but if that is not possible, a basketball 

court could be used, perhaps with some extra objects placed on it whose location has to be marked.  

Equipment required: Measuring tape, magnetic compasses, grid paper and geometrical instruments, including 

ruler and compasses.  

Assumed knowledge: Taking bearings using a magnetic compass, mensuration formulae, scale.  

Duration: 30 minutes  

A. Measure up the area. Draw a rough sketch map of the area. Choose any corner as starting point and label it 

1, then number the other corners in sequence, as in the example shown. The number of points will depend on the 

shape you are measuring. Use a tape to measure the length of each side. Now use a magnetic compass to find the 

direction of the longest side (remember that compass bearings are measured clockwise). If all the corners are right 

angles, you should be able to work out the directions of the other sides, using the fact that all the corners are right 

angles. If not, use the compass to find the direction of the other sides too. 

B. Prepare a table of bearings and distances  
Enter the results in the table giving the bearing and distance for each leg (e.g. if there are 10 points – 1 to 2, 2 to 

3, … 9 to 10, 10 to 1).  

C. Draw a map of the area you have measured  
Using your geometry equipment and the data in your table, draw a map of the area on grid paper provided by the 

surveyor or your teacher. Use a scale of 1 cm to 1 metre, i.e. 1:100. Mark North clearly on your map. Check with 

a surveyor that you have done this correctly.  

D. Use your map to calculate the area of the region. 

 Show your working and give your answer (in m2 , to 4 significant figures).  

 

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G%23section-11
http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G%23section-11
http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G%23section-11
http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=5&sesskey=od6JiQPi0G%23section-11

