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1. Theoretical background 

 

1.1. Origin of the notion of derivative 

 

In mathematics, the derivative of a function is one of the fundamental concepts of mathematical 

analysis, along with the primitive (inverse derivative or anti-derivative). 

 

The derivative of a function at a point signifies the rate at which the value of the function is 

changed when the argument is changed. In other words, the derivative is a mathematical 

formulation of the notion of rate of variation. The derivative is a very versatile concept that can 

be viewed in many ways. For example, referring to the two-dimensional graph of the function 

f, the derivative at a point x represents the slope of the tangent to the graph at the point x. The 

slope of the tangent can be approximated by a secant. With this geometric interpretation, it is 

not surprising that derivatives can be used to describe many geometric properties of function 

graphs, such as concavity and convexity. 

 

It should be noted that not all functions admit derivatives. For example, functions have no 

derivatives at points where they have a vertical tangent, at points of discontinuity and at points 

of return. 

 

1.2.  The Leibnitz–Newton dispute 

 

Differential and integral calculus were invented virtually simultaneously, but independently of 

each other, by the Englishman Isaac Newton (1643–1727) and the German mathematician 

Gottfried Wilhelm von Leibniz (1646–1716). 

 

It can be mentioned, with the almost anecdotal title, but absolutely real, that the scientific world 

of that moment (1685-1690) witnessed, almost “heartily”, for several years, an open and 

permanent dialog between the two titans, Leibnitz and Newton. Only after the two scientists 

have come to an understanding of the concepts and concepts from both points of view (the 

physicist and the mathematician), after agreeing with the preliminary notions, the limits and 

the methodology of approaching concepts, etc., the two of them were able to explain to the rest 

of the scientific world what it was all about. 

 

1.3. Derivative and derivability 

The derivative arose from the need to express the rate at which a quantity y changes (varies) as 

a result of the change (variation) of another quantity x to which it is bound by a function. Using 

the symbol Δ to note the change (variation) of a quantity, this rate is defined as the limit of the 

ratio of variations (differences): 

Δ𝑦

Δ𝑥
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As Δx tends toward 0 or otherwise expressed Δx was in the vicinity of 0. In Leibniz's notation, 

the derivative of y in relation to x is written 

 

𝑑𝑦

𝑑𝑥
 

 

 

 

 

suggesting the ratio of two infinitesimal numerical differences (quantities) (in the vicinity of 

0). The expression above can be pronounced either "dy supra dx" or "dy la dx". 

 

In contemporary mathematical language, no reference is made to quantities that vary; the 

derivative is considered a mathematical operation on functions. The formal definition of this 

operation (which no longer makes use of the notion of infinitesimal quantities) is given by the 

limit when h tends to 0 (e in the vicinity of 0) of the following expression: 

 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

 

1.4 The role of the derivative in physics 

 

There were two problems, one physical - the mathematical modeling of the intuitive 

notion of the speed of a mobile - and the other geometric - the tangent to a flat curve -, which 

led to the discovery of the notion of derivative. We have used several times references to the 

speed of a mobile, but only now will we be able to give the mathematical definition of this 

concept. 

a) Instantaneous speed of a mobile. We assume that on an axis Δ that a mobile moves 

in the positive direction of the axis and at the time t the mobile is at the abscissa point s(t). If 

the motion is uniform, then for any two moments t1, t2 (t1 ≠ t2) the ratio 
𝑠(𝑡2)−𝑠(𝑡1)

𝑡2−𝑡1
 is constant, 

equal to the speed v of the mobile; in this case, it is known that s(t) = 𝑣 ∙ 𝑡. But what happens 

if the mobile no longer has a uniform movement, although it moves along the same axis Δ? 
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The previous ratio will no longer be constant and for any moment t1, t2 (t1 ≠ t2) the ratio  

𝑠(𝑡2)−𝑠(𝑡1)

𝑡2−𝑡1
  between the distance traveled and the elapsed time is called the average speed of 

the mobile between the respective moments (it should be noted that we did not fix an ordering 

of moments t1, t2). Let's now consider a reference moment t0, practically there are no uniform 

movements, but on smaller and smaller intervals the movement tends to become uniform. For  

t →t0, t ≠ t0 it can be considered that the movement of the mobile during the time interval 

between t0 and t tends to become uniform, and 

the respective average speed tends to a 

characteristic of the movement exactly at the 

moment t₀ . This suggests the definition of the 

instantaneous speed of the mobile at time t₀ as 

the limit: 

 v(t₀ )= lim
𝑡→𝑡0

𝑠(𝑡)−𝑠(𝑡0)

𝑡−𝑡0
                                                             

assuming that this limit exists. 

So, v(t₀ ) is the limit for t->t₀ , of the average 

speed of the mobile between the moment 

t₀and t ≠ t₀  

 

 

For example, in the study of free fall, it was proven that the space traveled in meters after t 

seconds is s(t) = 
1

2
gt2.  Fixing a certain moment t₀, the speed at time t₀ is 

v(t0)= lim
𝑡→𝑡0

1

2
gt2−

1

2
gt0

2

𝑡−𝑡0
=  

1

2
lim
𝑡→𝑡0

𝑔(𝑡 + 𝑡0) =
1

2
𝑔 ∙ 2𝑡0 = 𝑔 ∙ 𝑡0 

 

and the speed at any moment t will be  

v(t) = g • t 

(g is the gravitational acceleration, g = 9.81 m/s2). 

Similarly, if v(t) is the speed of the mobile at any time t, then the acceleration of the 

mobile at time t₀ is defined as 

a(t)= lim
𝑡→𝑡0

𝑣(𝑡)−𝑣(𝑡0)

𝑡−𝑡0
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Assuming that this limit exists. Newton's fundamental law of mechanics shows that at each 

moment t the force F(t) acting on the mobile, the mass m of the mobile and the acceleration 

a(t) are given by the relation F(t) = m • a(t) 

 

 

 

2. Direct application of the derivative in physics  

 

2.1  Velocity and acceleration of a mobile 

Consider an axis Δ on which an origin, a direction and a unit of measurement have been fixed. 

Let it be a mobile (assimilable to a point on Δ ); denoting with s(t) the abscissa of the point 

where the mobile is at time t (also called the space traveled by the mobile) and assuming that s 

is a function derivable at a point t0, then the instantaneous speed v(t0) of the mobile at the time 

is defined t0 , as being the derivative of the space in t0, that is 

                           v(t0)=g'(t0) 

If the function g is twice differentiable in t0, then g'(t0) = v'(t0) is called the acceleration 

of the mobile at time t0. 

We note that in a rectilinear movement the speed is the derivative of the first order, the 

acceleration the derivative of the second order, of space in relation to time. 

These definitions constitute a natural application of definition I.1 to the considered 

physical model. 

 

Example 

 

We assume that the law of motion of a mobile about one axis is expressed by the relation 

                  g(t)=e-1cos t 

We want to determine the acceleration of the mobile after 2 seconds and calculate the speed 

limit as t tends to ∞ . 
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We have v(t)=g'(t)= -e-1cos t -e-1sin t= -e-1(cos t +sin t) and g(t)=v'(t)= -2e-1sin t0 so g(2)=
2𝑠𝑖𝑛2

𝑒2
  

and 

lim
𝑡→∞

𝑣(𝑡) = − lim
𝑡→∞

𝑐𝑜𝑠 𝑡+𝑠𝑖𝑛 𝑡

𝑒𝑡  and this limit is zero because |
𝑐𝑜𝑠 𝑡+𝑠𝑖𝑛𝑡

𝑒𝑡 <
2

𝑒𝑡|, any t (it is also said 

that the motion is damped for t -> ∞.) 

 

2.2.  The intensity of the electric current 

 

Denoting as Q(t) the charge passing through a section of a conductor in the time interval [0, t], 

then for any distinct instants t1, t2, the difference Q(t2) - Q(t1) is the charge passed between 

moments t1, t2, and the quantity 
Q(t2) − Q(t1) 

𝑡2−𝑡1
 is the average load related to the time interval 

between the two moments. In analogy with the previous mechanical model, if we fix a time t0 

and assume that the function Q is differentiable in t0, then the derivative Q'(t0) is the rate of 

variation of the electric charge at time t0, Q(t0) = lim
t→t0

𝑄(𝑡) − 𝑄(𝑡0) 

𝑡−𝑡0
 . It receives the specific 

denomination of the intensity of the electric current at time t0. 

If we consider an electric circuit consisting of an inductance L, a capacitance C and a 

resistance R, the voltage being constant, then from Kirchhoff second law it follows that the 

intensity of the current through that circuit will verify the following relationship (called 

differential equation) 

𝐿(𝑡) +𝑅(𝑡)+𝐶(𝑡)=0,    ∀t. 

Then there is the problem of determining the function, knowing L, R, C, which requires 

developments of the mathematical analysis apparatus 

 

2.3.  Linear mass density 

 

We consider a supposed material mass distributed on a bar, assimilated as an interval [a,b]. For 

any point x ∈   [a, b] we denote by m(x) the mass of the portion included in the interval  [a, x]. 

Fixing a point 𝑥0 € (a, b), the ratio 
𝑚(𝑥)−𝑚(𝑥0)

𝑥−𝑥0
 represents the average density between the points 

x, 𝑥0. 

  

 
                

 

At small intervals of length we can assume that the mass is distributed homogeneously and the 

idealization of this fact is taking into account the limit 
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ρ(𝑥0)= lim
𝑥→𝑥0

𝑚(𝑥)−𝑚(𝑥0)

𝑥−𝑥0
 

 (assuming it exists). In this case, an important characteristic is obtained, called the linear mass 

density at the point 𝑥0. So ρ(𝑥0)=m’(𝑥0). 

Example. We assume that a material mass is distributed on the interval [0, 4] so that  

m(x)=𝑥3 +3x, then the density at the point 𝑥0=2 is ρ(x)=m’(x)=(3𝑥2+3), ρ(2)=15 kg/m 

 

 

2.4. Homework 

 

1. The law of motion of a mobile on an axis is s(t)=t2-2t+1,  any t≥0. Calculate the speed and 

acceleration of the mobile at the moment t=1s. How do you explain the obtained result? 

 

2. The law of motion of a mobile on an axis is s(t)=ekt∙cos(2t),any t∈R.  Determine the constant 

k knowing that s"(t)+s'(t)+5s(t)=0, any t. Then calculate the speed and acceleration of the 

mobile at the moments t=0, t=
𝜋

2
 and for t→ ∞. 

 

3. The law of motion of a mobile on an axis is s(t)=t3-12t2+4.  At what moment is its 

acceleration 0? What is the minimum value of the speed of the mobile? 

 

4. We assume that at each moment t the amount of energy flowing through a conductor is 

Q(t)=2cos(πt). Determine the intensity of the current. At what moment is the maximum 

intensity? And the minimum? 

 

3. The application of the derivative to make the connection between 

physics, mathematics and technique 

 

To perform an approximate calculation of the maximum 

power and determine the speed of a hydraulic wheel, 

operated from the bottom, if known: The height of the 

water column h, the cross section of the water jet S and 

the diameter of the wheel D. The stream of water 

continuously acts on the palettes and after it hits it falls. 

Numerical application: H=5m, S=0.6 m2, D=3m 

 

Solution 

The speed of the water jet when colliding with the hydraulic wheel paddle is given by the 

relation : 

v = √2𝑔ℎ 
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We will assume that the water jet after the paddle collision continues the movement, with the 

speed of the vk paddle, vk <v. 

In this case the mass flow Qm= m/Δt= ρlS/ Δt 

 Qm = S(v-vk)ρa = S(√2𝑔ℎ-vk)ρa  

lose in every unit of time (v-vk)speed.  

Because of this, the force F= ma= m(v-vk)/Δt 

F= Qm (v-vk)=S(√2𝑔ℎ-vk)
2ρa on the wheel is applied,  

so the power of the hydraulic wheel is : P=Fvk 

P= S(√2𝑔ℎ-vk)
2ρavk  (1) 

To determine the extremes of P=f(vk) we have: 

𝑑𝑃

𝑑𝑣𝑘
= S ρa (√2𝑔ℎ - vk) (√2𝑔ℎ - 3vk)=0         (2) 

of which    v1k = √2𝑔ℎ         - which is not possible because vk <v 

                  v2k = 
1

3 √2𝑔ℎ            (3) 

It has been observed since (2) that for vk=v2k the function P=f(v) has a maximum 

Replacing (3) in (1) is achieved 

Pmax = 
4

27
𝑆𝜌 (2gh)3/2             (4) 

 

The optimum angular rotational speed of the hydraulic wheel is 

ω=2
𝑣2𝑘

𝐷
 = 

2

3𝐷 √2𝑔ℎ,  and the frequency of rotation n is  ω= 2πn 

n= 
2

3𝜋𝐷 √2𝑔ℎ = 
2 .60

3𝜋𝐷 √2𝑔ℎ ≅
20

𝐷
√2ℎ (rot/min),  π2≅10        (5) 

 

Replacing the numerics in (4) and (5) results  

Pmax = 86,368kW, n≅31 rot/min 
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